Strongly Ergodic Sequences of Integers and the Individual Ergodic Theorem

نویسنده

  • J. I. REICH
چکیده

Let S = {ki,ki, ...} be an increasing sequence of positive integers. We call S strongly ergodic if for every measure preserving transformation T on a probability space (Cl, J, P) and every / £ Li(f2) we have limn-»oo(l/n) J^^j f(TkiuJ) = Pf(w) a.e. where Pf is the appropriate limit guaranteed by the individual ergodic theorem. We give sufficient conditions for a sequence S to be strongly ergodic and provide examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state

The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing  m-almost everywhere convergence, where  m...

متن کامل

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

Powers of sequences and convergence of ergodic averages

A sequence (sn) of integers is good for the mean ergodic theorem if for each invertible measure preserving system (X, B, µ, T) and any bounded measurable function f , the averages 1 N P N n=1 f (T sn x) converge in the L 2 (µ) norm. We construct a sequence (sn) that is good for the mean ergodic theorem, but the sequence (s 2 n) is not. Furthermore, we show that for any set of bad exponents B, t...

متن کامل

Ergodic Averages for Independent Polynomials and Applications

Szemerédi’s Theorem states that a set of integers with positive upper density contains arbitrarily long arithmetic progressions. Bergelson and Leibman generalized this, showing that sets of integers with positive upper density contain arbitrarily long polynomial configurations; Szemerédi’s Theorem corresponds to the linear case of the polynomial theorem. We focus on the case farthest from the l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010